Journal Article
Review
Add like
Add dislike
Add to saved papers

A new predictive coding model for a more comprehensive account of delusions.

Attempts to understand psychosis-the experience of profoundly altered perceptions and beliefs-raise questions about how the brain models the world. Standard predictive coding approaches suggest that it does so by minimising mismatches between incoming sensory evidence and predictions. By adjusting predictions, we converge iteratively on a best guess of the nature of the reality. Recent arguments have shown that a modified version of this framework-hybrid predictive coding-provides a better model of how healthy agents make inferences about external reality. We suggest that this more comprehensive model gives us a richer understanding of psychosis compared with standard predictive coding accounts. In this Personal View, we briefly describe the hybrid predictive coding model and show how it offers a more comprehensive account of the phenomenology of delusions, thereby providing a potentially powerful new framework for computational psychiatric approaches to psychosis. We also make suggestions for future work that could be important in formalising this novel perspective.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app