We have located links that may give you full text access.
Diagnostic performance of deep-learning-based virtual chromoendoscopy in gastric neoplasms.
Gastric Cancer 2024 January 19
BACKGROUNDS: Cycle-consistent generative adversarial network (CycleGAN) is a deep neural network model that performs image-to-image translations. We generated virtual indigo carmine (IC) chromoendoscopy images of gastric neoplasms using CycleGAN and compared their diagnostic performance with that of white light endoscopy (WLE).
METHODS: WLE and IC images of 176 patients with gastric neoplasms who underwent endoscopic resection were obtained. We used 1,633 images (911 WLE and 722 IC) of 146 cases in the training dataset to develop virtual IC images using CycleGAN. The remaining 30 WLE images were translated into 30 virtual IC images using the trained CycleGAN and used for validation. The lesion borders were evaluated by 118 endoscopists from 22 institutions using the 60 paired virtual IC and WLE images. The lesion area concordance rate and successful whole-lesion diagnosis were compared.
RESULTS: The lesion area concordance rate based on the pathological diagnosis in virtual IC was lower than in WLE (44.1% vs. 48.5%, p < 0.01). The successful whole-lesion diagnosis was higher in the virtual IC than in WLE images; however, the difference was insignificant (28.2% vs. 26.4%, p = 0.11). Conversely, subgroup analyses revealed a significantly higher diagnosis in virtual IC than in WLE for depressed morphology (41.9% vs. 36.9%, p = 0.02), differentiated histology (27.6% vs. 24.8%, p = 0.02), smaller lesion size (42.3% vs. 38.3%, p = 0.01), and assessed by expert endoscopists (27.3% vs. 23.6%, p = 0.03).
CONCLUSIONS: The diagnostic ability of virtual IC was higher for some lesions, but not completely superior to that of WLE. Adjustments are required to improve the imaging system's performance.
METHODS: WLE and IC images of 176 patients with gastric neoplasms who underwent endoscopic resection were obtained. We used 1,633 images (911 WLE and 722 IC) of 146 cases in the training dataset to develop virtual IC images using CycleGAN. The remaining 30 WLE images were translated into 30 virtual IC images using the trained CycleGAN and used for validation. The lesion borders were evaluated by 118 endoscopists from 22 institutions using the 60 paired virtual IC and WLE images. The lesion area concordance rate and successful whole-lesion diagnosis were compared.
RESULTS: The lesion area concordance rate based on the pathological diagnosis in virtual IC was lower than in WLE (44.1% vs. 48.5%, p < 0.01). The successful whole-lesion diagnosis was higher in the virtual IC than in WLE images; however, the difference was insignificant (28.2% vs. 26.4%, p = 0.11). Conversely, subgroup analyses revealed a significantly higher diagnosis in virtual IC than in WLE for depressed morphology (41.9% vs. 36.9%, p = 0.02), differentiated histology (27.6% vs. 24.8%, p = 0.02), smaller lesion size (42.3% vs. 38.3%, p = 0.01), and assessed by expert endoscopists (27.3% vs. 23.6%, p = 0.03).
CONCLUSIONS: The diagnostic ability of virtual IC was higher for some lesions, but not completely superior to that of WLE. Adjustments are required to improve the imaging system's performance.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app