We have located links that may give you full text access.
Vascular microphysiological systems.
Current Opinion in Hematology 2024 January 19
PURPOSE OF REVIEW: This review summarizes innovations in vascular microphysiological systems (MPS) and discusses the themes that have emerged from recent works.
RECENT FINDINGS: Vascular MPS are increasing in complexity and ability to replicate tissue. Many labs use vascular MPS to study transport phenomena such as analyzing endothelial barrier function. Beyond vascular permeability, these models are also being used for pharmacological studies, including drug distribution and toxicity modeling. In part, these studies are made possible due to exciting advances in organ-specific models. Inflammatory processes have also been modeled by incorporating immune cells, with the ability to explore both cell migration and function. Finally, as methods for generating vascular MPS flourish, many researchers have turned their attention to incorporating flow to more closely recapitulate in vivo conditions.
SUMMARY: These models represent many different types of tissue and disease states. Some devices have relatively simple geometry and few cell types, while others use complex, multicompartmental microfluidics and integrate several cell types and origins. These 3D models enable us to observe model evolution in real time and perform a plethora of functional assays not possible using traditional cell culture methods.
RECENT FINDINGS: Vascular MPS are increasing in complexity and ability to replicate tissue. Many labs use vascular MPS to study transport phenomena such as analyzing endothelial barrier function. Beyond vascular permeability, these models are also being used for pharmacological studies, including drug distribution and toxicity modeling. In part, these studies are made possible due to exciting advances in organ-specific models. Inflammatory processes have also been modeled by incorporating immune cells, with the ability to explore both cell migration and function. Finally, as methods for generating vascular MPS flourish, many researchers have turned their attention to incorporating flow to more closely recapitulate in vivo conditions.
SUMMARY: These models represent many different types of tissue and disease states. Some devices have relatively simple geometry and few cell types, while others use complex, multicompartmental microfluidics and integrate several cell types and origins. These 3D models enable us to observe model evolution in real time and perform a plethora of functional assays not possible using traditional cell culture methods.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app