We have located links that may give you full text access.
Molecular analysis of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Switzerland 2022-2023.
European Journal of Clinical Microbiology & Infectious Diseases 2024 January 18
OBJECTIVES: The occurrence of metallo-beta-lactamase-producing Pseudomonas aeruginosa (MBL-PA) isolates is increasing globally, including in Switzerland. The aim of this study was to characterise, phenotypically and genotypically, the MBL-PA isolates submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) reference laboratory over a 12-month period from July 2022 to July 2023.
METHODS: Thirty-nine non-duplicate MBL-PA Isolates were submitted to NARA over the study period from across Switzerland. Susceptibility was determined by broth microdilution according to EUCAST methodology. Whole-genome sequencing was performed on 34 isolates. Sequence types (STs) and resistance genes were ascertained using the Centre for Genomic Epidemiology platform. MBL genes, blaNDM-1 , blaIMP-1 , and blaVIM-2 , were cloned into vector pUCP24 and transformed into P. aeruginosa PA14.
RESULTS: The most prevalent MBL types identified in this study were VIM (21/39; 53.8%) followed by NDM (11/39; 28.2%), IMP (6/39; 15.4%), and a single isolate produced both VIM and NDM enzymes. WGS identified 13 different STs types among the 39 isolates. They all exhibited resistance to cephalosporins, carbapenems, and the beta-lactam-beta-lactamase inhibitor combinations, ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam, and 8 isolates were cefiderocol (FDC) resistant. Recombinant P. aeruginosa strains producing blaNDM-1 , blaIMP-1 , and blaVIM-2 exhibited FDC MICs of 16, 8, and 1 mg/L, respectively.
CONCLUSIONS: This study showed that the MBL-PA in Switzerland could be attributed to the wide dissemination of high-risk clones that accounted for most isolates in this study. Although FDC resistance was only found in 8 isolates, MBL carriage was shown to be a major contributor to this phenotype.
METHODS: Thirty-nine non-duplicate MBL-PA Isolates were submitted to NARA over the study period from across Switzerland. Susceptibility was determined by broth microdilution according to EUCAST methodology. Whole-genome sequencing was performed on 34 isolates. Sequence types (STs) and resistance genes were ascertained using the Centre for Genomic Epidemiology platform. MBL genes, blaNDM-1 , blaIMP-1 , and blaVIM-2 , were cloned into vector pUCP24 and transformed into P. aeruginosa PA14.
RESULTS: The most prevalent MBL types identified in this study were VIM (21/39; 53.8%) followed by NDM (11/39; 28.2%), IMP (6/39; 15.4%), and a single isolate produced both VIM and NDM enzymes. WGS identified 13 different STs types among the 39 isolates. They all exhibited resistance to cephalosporins, carbapenems, and the beta-lactam-beta-lactamase inhibitor combinations, ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam, and 8 isolates were cefiderocol (FDC) resistant. Recombinant P. aeruginosa strains producing blaNDM-1 , blaIMP-1 , and blaVIM-2 exhibited FDC MICs of 16, 8, and 1 mg/L, respectively.
CONCLUSIONS: This study showed that the MBL-PA in Switzerland could be attributed to the wide dissemination of high-risk clones that accounted for most isolates in this study. Although FDC resistance was only found in 8 isolates, MBL carriage was shown to be a major contributor to this phenotype.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app