Add like
Add dislike
Add to saved papers

Vitamin A ameliorates valproic acid-induced autism-like symptoms in developing zebrafish larvae by attenuating oxidative stress and apoptosis.

Neurotoxicology 2024 January 6
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive/stereotyped behaviors. Prenatal exposure to valproic acid (VPA) has been reported to induce ASD-like symptoms in human and rodents. However, the etiology and pathogenesis of ASD have not been well elucidated. This study aimed to explore the mechanisms underlying VPA-induced ASD-like behaviors using zebrafish model and investigated whether vitamin A could prevent VPA-induced neurotoxicity. Here, zebrafish embryos were exposed to 0, 25 and 50μM VPA from 4 to 96hours post fertilization (hpf) and the neurotoxicity was assessed. Our results showed that VPA affected the normal development of zebrafish larvae and induced ASD-like behaviors, including reduced locomotor activity, decreased distance near conspecifics, impaired social interaction and repetitive swimming behaviors. Exposure to VPA decreased the GFP signal in transgenic HuC:egfp zebrafish according to the negative effect of VPA on the expression of neurodevelopmental genes. In addition, VPA enhanced oxidative stress by promoting the production of reactive oxygen species (ROS) and hydrogen peroxide (H2 O2 ) and inhibiting the activity of superoxide dismutase, then triggered apoptosis by upregulation of apoptotic genes. These adverse outcomes were mitigated by vitamin A, suggesting that vitamin A rescued VPA-induced ASD-like symptoms by inhibiting oxidative stress and apoptosis. Overall, this study identified vitamin A as a promising strategy for future therapeutic regulator of VPA-induced ASD-like behaviors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app