We have located links that may give you full text access.
Toxicity Spectrum of Anti-GD2 Immunotherapy: A Real-World Study Leveraging the US Food and Drug Administration Adverse Event Reporting System.
Paediatric Drugs 2023 December 28
BACKGROUND: Anti-disialoganglioside (anti-GD2) monoclonal antibodies are effective immunotherapeutic drugs for treating neuroblastoma, yet their toxicity spectrum is unclear.
OBJECTIVE: This study aimed to assess the toxicity profiles of three anti-GD2 monoclonal antibodies (dinutuximab, dinutuximab β, and naxitamab) in clinical applications by mining and evaluating the adverse drug reaction (ADR) signals from the US Food and Drug Administration Adverse Event Reporting System.
METHODS: Data in the US Food and Drug Administration Adverse Event Reporting System from the time anti-GD2 monoclonal antibodies became available in the market to the first quarter of 2023 were searched. The signals of anti-GD2 monoclonal antibody-associated ADRs were quantified using four types of algorithms, including the reporting odds ratio, the proportional reporting ratio, the combination of the proportional reporting ratio and χ2 statistic method used by the UK Medicines and Healthcare Products Regulatory Agency, and the Bayesian confidence propagation neural network. The ADRs were categorized by System Organ Class based on the Medical Dictionary for Regulatory Activities, and were sorted according to the frequency and signal strength of ADRs.
RESULTS: A total of 370 adverse drug event reports with anti-GD2 monoclonal antibodies listed as the 'primary suspected drugs' were identified, with 116 ADR signals detected, of which 22 were not in the drug labels. Among the adverse drug event reports, 276 reports concerned dinutuximab/dinutuximab β as primary suspected drugs with 90 ADR signals, involving 19 System Organ Classes, of which 21 signals were not in the label; 94 adverse drug event reports concerned naxitamab as the primary suspected drug with 26 ADR signals, involving 11 System Organ Classes, of which one was not in the label. For dinutuximab/dinutuximab β-related ADRs, the top five most frequent were "fever", "abdominal pain", "elevated aspartate aminotransferase (AST)", "elevated alanine aminotransferase (ALT)" and "hypotension"; the top five most intensive signals were "hypoalbuminemia", "elevated AST", "capillary leakage syndrome", "hypoxia" and "elevated ALT". For naxitamab-related ADRs, the top five most frequent were "hypotension", "pain", "urticarial", "hypertension" and "rash"; the top five most intensive signals were "hypotension", "urticaria", "hypoxemia", "bronchospasm" and "hypertension". Involved System Organ Classes included "investigations" and "respiratory, thoracic and mediastinal disorders" containing the most types of ADR signals in dinutuximab/dintuximab β-related ADRs and naxitamab-related ADRs, respectively.
CONCLUSIONS: Our study comprehensively analyzed the toxicity profiles of anti-GD2 monoclonal antibodies and provides an important reference for clinical monitoring and ADR identification of these drugs.
OBJECTIVE: This study aimed to assess the toxicity profiles of three anti-GD2 monoclonal antibodies (dinutuximab, dinutuximab β, and naxitamab) in clinical applications by mining and evaluating the adverse drug reaction (ADR) signals from the US Food and Drug Administration Adverse Event Reporting System.
METHODS: Data in the US Food and Drug Administration Adverse Event Reporting System from the time anti-GD2 monoclonal antibodies became available in the market to the first quarter of 2023 were searched. The signals of anti-GD2 monoclonal antibody-associated ADRs were quantified using four types of algorithms, including the reporting odds ratio, the proportional reporting ratio, the combination of the proportional reporting ratio and χ2 statistic method used by the UK Medicines and Healthcare Products Regulatory Agency, and the Bayesian confidence propagation neural network. The ADRs were categorized by System Organ Class based on the Medical Dictionary for Regulatory Activities, and were sorted according to the frequency and signal strength of ADRs.
RESULTS: A total of 370 adverse drug event reports with anti-GD2 monoclonal antibodies listed as the 'primary suspected drugs' were identified, with 116 ADR signals detected, of which 22 were not in the drug labels. Among the adverse drug event reports, 276 reports concerned dinutuximab/dinutuximab β as primary suspected drugs with 90 ADR signals, involving 19 System Organ Classes, of which 21 signals were not in the label; 94 adverse drug event reports concerned naxitamab as the primary suspected drug with 26 ADR signals, involving 11 System Organ Classes, of which one was not in the label. For dinutuximab/dinutuximab β-related ADRs, the top five most frequent were "fever", "abdominal pain", "elevated aspartate aminotransferase (AST)", "elevated alanine aminotransferase (ALT)" and "hypotension"; the top five most intensive signals were "hypoalbuminemia", "elevated AST", "capillary leakage syndrome", "hypoxia" and "elevated ALT". For naxitamab-related ADRs, the top five most frequent were "hypotension", "pain", "urticarial", "hypertension" and "rash"; the top five most intensive signals were "hypotension", "urticaria", "hypoxemia", "bronchospasm" and "hypertension". Involved System Organ Classes included "investigations" and "respiratory, thoracic and mediastinal disorders" containing the most types of ADR signals in dinutuximab/dintuximab β-related ADRs and naxitamab-related ADRs, respectively.
CONCLUSIONS: Our study comprehensively analyzed the toxicity profiles of anti-GD2 monoclonal antibodies and provides an important reference for clinical monitoring and ADR identification of these drugs.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app