Add like
Add dislike
Add to saved papers

Assessing transmission attribution risk from simulated sequencing data in HIV molecular epidemiology.

AIDS 2023 December 20
BACKGROUND: HIV molecular epidemiology (ME) is the analysis of sequence data together with individual-level clinical, demographic, and behavioral data to understand HIV epidemiology. The use of ME has raised concerns regarding identification of the putative source in direct transmission events. This could result in harm ranging from stigma to criminal prosecution in some jurisdictions. Here we assessed the risks of ME using simulated HIV genetic sequencing data.

METHODS: We simulated social networks of men-who-have-sex-with-men, calibrating the simulations to data from San Diego. We used these networks to simulate consensus and next-generation sequence (NGS) data to evaluate the risks of identifying direct transmissions using different HIV sequence lengths, and population sampling depths. To identify the source of transmissions, we calculated infector probability and used phyloscanner software for the analysis of consensus and NGS data, respectively.

RESULTS: Consensus sequence analyses showed that the risk of correctly inferring the source (direct transmission) within identified transmission pairs was very small and independent of sampling depth. Alternatively, NGS analyses showed that identification of the source of a transmission was very accurate, but only for 6.5% of inferred pairs. False positive transmissions were also observed, where one or more unobserved intermediaries were present when compared to the true network.

CONCLUSION: Source attribution using consensus sequences rarely infers direct transmission pairs with high confidence but is still useful for population studies. In contrast, source attribution using NGS data was much more accurate in identifying direct transmission pairs, but for only a small percentage of transmission pairs analyzed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app