We have located links that may give you full text access.
Detailed Study of Collagen, Vasculature, and Innervation in the Human Cardiac Conduction System.
Cardiovascular Pathology : the Official Journal of the Society for Cardiovascular Pathology 2023 December 15
BACKGROUND: The cardiac conduction system (CCS) creates and propagates electrical signals generating the heartbeat. This study aimed to assess the collagen content, vasculature, and innervation in the human sinoatrial and atrioventricular CCS, and surrounding tissue.
MATERIALS AND METHODS: Ten sinoatrial and 17 atrioventricular CCS samples were collected from 17 adult human autopsied hearts. Masson trichrome stain was used to examine collagen, cardiomyocytes, and fat proportions. Immunohistochemically, vessels and lymphatics were studied by CD31 (pan-endothelial marker) and D2-40 (lymphatic endothelium marker) antibodies. General nerve densities were assessed by S100, while sympathetic nerves were studied using tyrosine hydroxylase, parasympathetic nerves with choline acetyltransferase, and GAP43 (neural growth marker) antibodies looked at these components. All components were quantified with QuPath software.
RESULTS: Interstitial collagen was more than two times higher in the sinoatrial vs. atrioventricular CCS (55% vs. 22%). The fat content was 6.3% in the sinoatrial CCS and 6.5% in the atrioventricular CCS. The lymphatic vessel density was increased in the sinoatrial and atrioventricular CCS compared to the surrounding tissue and was lower in the sinoatrial vs. atrioventricular CCS (P=0.043). The overall vasculature density did not differ between the SA and AV CCS. The overall innervation and neural growth densities were significantly increased in the CCS compared to the surrounding tissue. The overall innervation was higher in the atrial vs. ventricular CCS (P=0.018). The neural growth was higher in the atrial vs. ventricular CCS (P=0.018). The sympathetic neural supply was dominant in all the studied regions with the highest density in the sinoatrial CCS.
CONCLUSIONS: Our results provide new insights into the unique morphology of the human CCS collagen, fat, vasculature, and innervation. A deeper understanding of the CCS anatomical components and morphologic substrates' role will help in elucidating the causes of cardiac arrhythmias and provide a basis for further therapeutic interventions.
MATERIALS AND METHODS: Ten sinoatrial and 17 atrioventricular CCS samples were collected from 17 adult human autopsied hearts. Masson trichrome stain was used to examine collagen, cardiomyocytes, and fat proportions. Immunohistochemically, vessels and lymphatics were studied by CD31 (pan-endothelial marker) and D2-40 (lymphatic endothelium marker) antibodies. General nerve densities were assessed by S100, while sympathetic nerves were studied using tyrosine hydroxylase, parasympathetic nerves with choline acetyltransferase, and GAP43 (neural growth marker) antibodies looked at these components. All components were quantified with QuPath software.
RESULTS: Interstitial collagen was more than two times higher in the sinoatrial vs. atrioventricular CCS (55% vs. 22%). The fat content was 6.3% in the sinoatrial CCS and 6.5% in the atrioventricular CCS. The lymphatic vessel density was increased in the sinoatrial and atrioventricular CCS compared to the surrounding tissue and was lower in the sinoatrial vs. atrioventricular CCS (P=0.043). The overall vasculature density did not differ between the SA and AV CCS. The overall innervation and neural growth densities were significantly increased in the CCS compared to the surrounding tissue. The overall innervation was higher in the atrial vs. ventricular CCS (P=0.018). The neural growth was higher in the atrial vs. ventricular CCS (P=0.018). The sympathetic neural supply was dominant in all the studied regions with the highest density in the sinoatrial CCS.
CONCLUSIONS: Our results provide new insights into the unique morphology of the human CCS collagen, fat, vasculature, and innervation. A deeper understanding of the CCS anatomical components and morphologic substrates' role will help in elucidating the causes of cardiac arrhythmias and provide a basis for further therapeutic interventions.
Full text links
Related Resources
Trending Papers
Light chain deposition disease: pathogenesis, clinical characteristics and treatment strategies.Annals of Hematology 2024 August 28
Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management.American Journal of Hematology 2024 September 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app