Add like
Add dislike
Add to saved papers

Cobalt-induced apoptosis of cochlear organotypic cultures and HEI-OC1 cells is mediated by Dicer.

Neurotoxicology 2024 January
Cobalt is widely used in the medical industry, mainly including cobalt alloy joint implants and cobalt-chromium porcelain crowns. However, unexplained ototoxicity and neurotoxicity often occur in the clinical use of cobalt agents at present, which limits the development of the cobalt industry. In this study, based on the clinical problem of cobalt ototoxicity, we first conducted an extensive search and collation of related theories, and on this basis, prepared an HEI-OC1 cell model and basilar membrane organotypic cultures after cobalt treatment. We used immunofluorescence staining, western blot, CCK8, and si-RNA to investigate the mechanism of cobalt ototoxicity, to discover its potential therapeutic targets. After comparing the reactive oxygen species, mitochondrial transmembrane potential, apoptosis-related protein expression, and cell viability of different treatment groups, the following conclusions were drawn: cobalt causes oxidative stress in the inner ear, which leads to apoptosis of inner ear cells; inhibition of oxidative stress and apoptosis can alleviate the damage of cobalt on inner ear cells; and the Dicer protein plays a role in the mechanism of inner ear damage and is a potential target for the treatment of cobalt-induced inner ear damage. Taken together, these results suggest that cobalt-induced ototoxicity triggered by oxidative stress activates a cascade of apoptotic events where cCaspase-3 decreases Dicer levels and amplifies this apoptotic pathway. It may be possible to prevent and treat cobalt ototoxicity by targeting this mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app