Add like
Add dislike
Add to saved papers

Structural characterization and origin of surface vesicles in monocytes: another membranous pathway from cytoplasm to cell surface.

Ultrastructural Pathology 2023 November 30
The monocytes in acute monocytic leukemia (AML-M5b) were analyzed by scanning and transmission electron microscopy (SEM and TEM) to understand more fully their structure and origin. By SEM, monocytes exhibited localized expansions of the surface, some of which appeared to bud off as surface vesicles (SVs). Filopodial processes and pseudopodia were also present. TEM demonstrated that the SVs were composed of a double-membrane at the pole away from the cell body, and a single membrane nearer to the cell body. In the peripheral cytoplasm, intracellular vesicles (IVs) had the appearance of vacuoles and were enclosed by single membranes. Most SVs were characterized by a notch as a rER edge and an expanded head. Filopodial processes had the same thickness of 40 nm as the SV walls, which suggested a close developmental relationship between the two. Pseudopodia between SVs were irregular in size. Rod-like rER cisternae were prominent in the peripheral cytoplasm and some showed a close physical juxtaposition as to suggest a transition from rER to IVs to SVs. Ultrastructural cytochemistry demonstrated activity of 5'-nucleotidase over rER, SVs, filopodial processes and pseudopodia, and a patchy reaction over other areas of plasma membrane. Overall, the results indicated that rER transforms into SVs, filopodial processes and pseudopodia, as a way of integrating cytoplasmic membranes into the plasma membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app