Add like
Add dislike
Add to saved papers

Distal aortic biomechanics after transcatheter versus surgical aortic valve replacement: a hypothesis generating study.

BACKGROUND: Biomechanical effects of transcatheter (TAVR) versus surgical (SAVR) aortic valve interventions on the distal aorta have not been studied. This study utilized global circumferential strain (GCS) to assess post-procedural biomechanics changes in the descending aorta after TAVR versus SAVR.

METHODS: Patients undergoing TAVR or SAVR for aortic stenosis were included. Transesophageal (TEE) and transthoracic (TTE) echocardiography short-axis images of the aorta were used to image the descending aorta immediately before and after interventions. Image analysis was performed with two-dimensional speckle tracking echocardiography and dedicated software. Delta GCS was calculated as: post-procedural GCS-pre-procedural GCS. Percentage delta GCS was calculated as: (delta GCS/pre-procedural GCS) × 100.

RESULTS: Eighty patients, 40 TAVR (median age 81 y/o, 40% female) and 40 SAVR (median 72 y/o, 30% female) were included. The post-procedure GCS was significantly higher than the pre-procedural GCS in the TAVR (median 10.7 [interquartile range IQR 4.5, 14.6] vs. 17.0 [IQR 6.1, 20.9], p = 0.009) but not in the SAVR group (4.4 [IQR 3.3, 5.3] vs. 4.7 [IQR 3.9, 5.6], p = 0.3). The delta GCS and the percentage delta GCS were both significantly higher in the TAVR versus SAVR group (2.8% [IQR 1.4, 6] vs. 0.15% [IQR - 0.6, 1.5], p < 0.001; and 28.8% [IQR 14.6%, 64.6%] vs. 4.4% [IQR - 10.6%, 5.6%], p = 0.006). Results were consistent after multivariable adjustment for key clinical and hemodynamic characteristics.

CONCLUSIONS: After TAVR, there was a significantly larger increase in GCS in the distal aorta compared to SAVR. This may impact descending aortic remodeling and long-term risk of aortic events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app