Add like
Add dislike
Add to saved papers

Risk exploration and prediction model construction for linezolid-resistant Enterococcus faecalis based on big data in a province in southern China.

BACKGROUND: Enterococcus faecalis is a common cause of healthcare-associated infections. Its resistance to linezolid, the antibiotic of last resort for vancomycin-resistant enterococci, has become a growing threat in healthcare settings.

METHODS: We analyzed the data of E. faecalis isolates from 26 medical institutions between 2018 and 2020 and performed univariate and multivariate logistic regression analyses to determine the independent predictors for linezolid-resistant E. faecalis (LREFs). Then, we used the artificial neural network (ANN) and logistic regression (LR) to build a prediction model for linezolid resistance and performed a performance evaluation and comparison.

RESULTS: Of 12,089 E. faecalis strains, 755 (6.25%) were resistant to linezolid. Among vancomycin-resistant E. faecalis, the linezolid-resistant rate was 24.44%, higher than that of vancomycin-susceptible E. faecalis (p < 0.0001). Univariate and multivariate regression analyses showed that gender, age, specimen type, length of stay before culture, season, region, GDP (gross domestic product), number of beds, and hospital level were predictors of linezolid resistance. Both the ANN and LR models constructed in the study performed well in predicting linezolid resistance in E. faecalis, with AUCs of 0.754 and 0.741 in the validation set, respectively. However, synthetic minority oversampling technique (SMOTE) did not improve the prediction ability of the models.

CONCLUSION: E. faecalis linezolid-resistant rates varied by specimen site, geographic region, GDP level, facility level, and the number of beds. At the same time, community-acquired E. faecalis with linezolid resistance should be monitored closely. We can use the prediction model to guide clinical medication and take timely prevention and control measures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app