We have located links that may give you full text access.
Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18 F-FDG PET/MRI Radiomics.
CNS Neuroscience & Therapeutics 2023 November 30
PURPOSE: This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD).
METHODS: A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18 F-fluorodeoxyglucose (18 F-FDG) PET, 3D arterial spin labeling (ASL), and high-resolution T1-weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad-Score) of logistic regression models were evaluated from 5-fold cross-validation.
RESULTS: The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single-modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad-Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests.
CONCLUSION: Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
METHODS: A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18 F-fluorodeoxyglucose (18 F-FDG) PET, 3D arterial spin labeling (ASL), and high-resolution T1-weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad-Score) of logistic regression models were evaluated from 5-fold cross-validation.
RESULTS: The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single-modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad-Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests.
CONCLUSION: Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app