Add like
Add dislike
Add to saved papers

The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa.

BMC Biotechnology 2023 November 30
BACKGROUND: Filamentous fungi are efficient degraders of plant biomass and the primary producers of commercial cellulolytic enzymes. While the transcriptional regulation mechanisms of cellulases have been continuously explored in lignocellulolytic fungi, the induction of cellulase production remains a complex multifactorial system, with several aspects still largely elusive.

RESULTS: In this study, we identified a Zn2 Cys6 transcription factor, designated as Clr-5, which regulates the expression of cellulase genes by influencing amino acid metabolism in Neurospora crassa during growth on cellulose. The deletion of clr-5 caused a significant decrease in secreted protein and cellulolytic enzyme activity of N. crassa, which was partially alleviated by supplementing with yeast extract. Transcriptomic profiling revealed downregulation of not only the genes encoding main cellulases but also those related to nitrogen metabolism after disruption of Clr-5 under Avicel condition. Clr-5 played a crucial role in the utilization of multiple amino acids, especially leucine and histidine. When using leucine or histidine as the sole nitrogen source, the Δclr-5 mutant showed significant growth defects on both glucose and Avicel media. Comparative transcriptomic analysis revealed that the transcript levels of most genes encoding carbohydrate-active enzymes and those involved in the catabolism and uptake of histidine, branched-chain amino acids, and aromatic amino acids, were remarkably reduced in strain Δclr-5, compared with the wild-type N. crassa when grown in Avicel medium with leucine or histidine as the sole nitrogen source. These findings underscore the important role of amino acid metabolism in the regulation of cellulase production in N. crassa. Furthermore, the function of Clr-5 in regulating cellulose degradation is conserved among ascomycete fungi.

CONCLUSIONS: These findings regarding the novel transcription factor Clr-5 enhance our comprehension of the regulatory connections between amino acid metabolism and cellulase production, offering fresh prospects for the development of fungal cell factories dedicated to cellulolytic enzyme production in bio-refineries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app