Add like
Add dislike
Add to saved papers

The combined deleterious effects of multiple sclerosis and ageing on neuromuscular function.

Experimental Gerontology 2023 November 28
BACKGROUND: The prevalence of older (>60 years) people with multiple sclerosis (pwMS) is increasing. This introduces numerous challenges, as both MS and ageing independently contribute to the deterioration of neuromuscular function.

AIM: The aim was to compare the neuromuscular function in pwMS and healthy controls (HC) across three age groups: young, middle-aged, and old.

METHODS: Using a cross-sectional study design, the maximal muscle strength (Fmax) and rate of force development (RFD) of the knee extensors (KE) and plantar flexors (PF) were assessed using an isokinetic dynamometer. In addition, voluntary activation (VA) and resting twitch (RT) were measured using the interpolated twitch technique.

RESULTS: The Fmax, RFD, and VA of the KE were reduced in pwMS compared to HC across age groups. In pwMS, reductions were observed in PF Fmax, RFD, and RT, predominantly in the middle-aged and old age groups. Reductions increased with age in KE for both groups (except for VA) but in PF only for pwMS. The "trajectory" differed between pwMS and HC, as pwMS showed reductions from young to middle age, while HC showed reductions from middle to old age in KE.

CONCLUSION: The combined negative effects of MS and ageing on neuromuscular function were especially present in the PF but also substantial in the KE. RFD showed large deficits for pwMS compared to HC across age groups. The findings can partly be explained by a reduction in VA and RT, but further investigations of neural regulation are needed to explain large RFD deficits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app