Add like
Add dislike
Add to saved papers

Deep learning-based regional ECG diagnosis platform.

OBJECTIVE: To enable the intelligent diagnosis of a variety of common Electrocardiogram (ECG), we investigate the deep learning-based ECG diagnosis system.

METHODS: From January 2015 to December 2019, four consecutive years of 100,120 conventional 12-lead ECG data were collected in our hospital. Utilizing this dataset, we constructed a deep learning model designed to intelligently diagnose prevalent ECG anomalies by employing a multi-task learning framework. The system performance was evaluated using various metrics, including sensitivity, specificity, negative predictive value, positive predictive value, and so forth. Additionally, we employed an ECG intelligent diagnostic platform for clinical application to undertake real-time online analysis of 2500 conventional 12-lead ECG samples in June 2020, aiming to validate our model. At this stage, we compared the performance of our model against the traditional manual identification method.

RESULTS: The efficacy of the ECG intelligent diagnostic model was notably high for common and straightforward ECG patterns, such as sinus rhythm (F1 = 98.01%), sinus tachycardia (F1 = 96.26%), sinus bradycardia (F1 = 94.88%), and a normal electrocardiogram (F1 = 91.71%), as well as for Premature Ventricular Contractions (F1 = 91.62%). Nevertheless, when diagnosing rarer and more intricate ECG anomalies, the system requires an increased number of samples to refine the deep learning models. During the validation stage, our model exhibited better efficiency in terms of accuracy, labor time and labor cost when compared to the manual identification approach.

CONCLUSIONS: Our deep learning-driven intelligent ECG diagnostic model clearly demonstrates significant clinical utility. The integrated artificial intelligence diagnosis system not only has the potential to augment physicians in their diagnostic processes but also offers a viable avenue to reduce associated labor costs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app