Add like
Add dislike
Add to saved papers

Simultaneous irradiation of 660 and 808 nm on gingival epithelial cells and fibroblasts induces different patterns of oxidative/antioxidative activities: What is the role of the cell type and irradiation parameters?

The aim of this study was to investigate whether simultaneous irradiation at 660 and 808 nm generates different patterns of oxidative/antioxidative activities compared to consecutive irradiation. Primary cultures of gingival keratinocytes and fibroblasts were exposed to a diose laser (660 ± 2 nm and 808 ± 2 nm, 100 mW, 0.09 cm2 spot area) using double irradiation with the two wavelengths (consecutive or simultaneous) for 6, 10, and 20 s. The two irradiation regimens did not increase cell viability in any of the experimental conditions. Lipid peroxidation was increased after consecutive irradiation in epithelial cells, which was not detected after simultaneous irradiation. After 20s of the simultaneous mode, ROS levels increased, but antioxidative balance decreased. In the fibroblasts, the two double irradiations induced ROS reduction, increase in lipid peroxidation, and improvement of antioxidative balance, mainly after the 20 s irradiation time. In conclusion, simultaneous and consecutive irradiation induced distinct oxidative stress modulation in oral epithelial cells and fibroblasts. The imbalance in the oxidative system observed after longer exposures, allied with the absence of a significant increase in the viability of the two cell types, suggests a contraindication for longer simultaneous irradiation in clinical situations that demand cellular stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app