We have located links that may give you full text access.
RET Signaling Persists in the Adult Intestine and Stimulates Motility by Limiting PYY Release from Enteroendocrine Cells.
Gastroenterology 2023 November 21
BACKGROUND & AIMS: RET tyrosine kinase is necessary for enteric nervous system development. Loss-of-function RET mutations cause Hirschsprung disease (HSCR), in which infants are born with aganglionic bowel. Despite surgical correction, patients with HSCR often experience chronic defecatory dysfunction and enterocolitis, suggesting that RET is important after development. To test this hypothesis, we determined the location of postnatal RET and its significance in gastrointestinal (GI) motility.
METHODS: RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells.
RESULTS: Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1, both of which can alter motility. RET kinase inhibition exaggerated PYY and glucagon-like peptide 1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET.
CONCLUSIONS: RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.
METHODS: RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells.
RESULTS: Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1, both of which can alter motility. RET kinase inhibition exaggerated PYY and glucagon-like peptide 1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET.
CONCLUSIONS: RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app