Add like
Add dislike
Add to saved papers

One Week of Single Leg Immobilization Lowers Muscle Connective Protein Synthesis Rates in Healthy, Young Adults.

PURPOSE: Short periods of limb immobilization lower myofibrillar protein synthesis rates. Within skeletal muscle, the extracellular matrix of connective proteins is recognized as an important factor determining the capacity to transmit contractile force. Little is known regarding the impact of immobilization and subsequent recovery on muscle connective protein synthesis rates. This study examined the impact of one week of leg immobilization and two weeks of subsequent ambulant recovery on daily muscle connective protein synthesis rates.

METHODS: Thirty healthy, young (24 ± 5 y) men were subjected to 7 days of one-legged knee immobilization followed by 14 days of ambulant recovery. Deuterium oxide ingestion was applied over the entire period and muscle biopsy samples were collected before immobilization, after immobilization, and after recovery to measure muscle connective protein synthesis rates and mRNA expression of key extracellular matrix proteins (collagen I, collagen III), glycoproteins (fibronectin, tenascin-C), and proteoglycans (fibromodulin, and decorin). A two-way repeated measures (time x leg) ANOVA was used to compare changes in muscle connective protein synthesis rates during immobilization and recovery.

RESULTS: During immobilization, muscle connective protein synthesis rates were lower in the immobilized (1.07 ± 0.30 %/d) compared with the non-immobilized (1.48 ± 0.44 %/d; P < 0.01) leg. When compared to the immobilization period, connective protein synthesis rates in the immobilized leg increased during subsequent recovery (1.48 ± 0.64 %/d; P < 0.01). Following recovery, skeletal muscle collagen I, collagen III, fibronectin, fibromodulin, and decorin mRNA expression increased when compared to the post-immobilization timepoint (all P < 0.001).

CONCLUSIONS: One week of leg immobilization lowers muscle connective protein synthesis rates. Muscle connective protein synthesis rates increase during subsequent ambulant recovery, which is accompanied by increased mRNA expression of key extracellular matrix proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app