Add like
Add dislike
Add to saved papers

Pontine parabrachial nucleus-basal forebrain circuitry regulating cortical and hippocampal arousal.

Sleep Medicine 2023 November 11
INTRODUCTION: The basal forebrain (BF) and the medial septum (MS) respectively drive neuronal activity of cerebral cortex and hippocampus (HPC) in sleep-wake cycle. Our previous studies of lesions and neuronal circuit tracing have shown that the pontine parabrachial nucleus (PB) projections to the BF and MS may be a key circuit for cortical and HPC arousal.

AIMS: This study aims to demonstrate that PB projections to the BF and MS activate the cerebral cortex and HPC.

RESULTS: By using chemogenetic stimulation of the BF, the PB-BF and the PB-MS pathway combined with electroencephalogram (EEG) Fast Fourier Transformation (FFT) analysis in rats, we demonstrated that chemogenetic stimulation of the BF or PB neurons projecting to the BF activated the cerebral cortex while chemogenetic stimulation of the MS or PB neurons projecting to the MS activated HPC activity, in sleep and wake state. These stimulations did not significantly alter sleep-wake amounts.

CONCLUSIONS: Our results support that PB projections to the BF and MS specifically regulating cortical and HPC activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app