Add like
Add dislike
Add to saved papers

Diagnostic efficacy of an optimized nucleotide MALDI-TOF-MS assay for anti-tuberculosis drug resistance detection.

PURPOSE: We aimed at evaluating the diagnostic efficacy of a nucleotide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) assay to detect drug resistance of Mycobacterium tuberculosis.

METHODS: Overall, 263 M. tuberculosis clinical isolates were selected to evaluate the performance of nucleic MALDI-TOF-MS for rifampin (RIF), isoniazid (INH), ethambutol (EMB), moxifloxacin (MXF), streptomycin (SM), and pyrazinamide (PZA) resistance detection. The results for RIF, INH, EMB, and MXF were compared with phenotypic microbroth dilution drug susceptibility testing (DST) and whole-genome sequencing (WGS), and the results for SM and PZA were compared with those obtained by WGS.

RESULTS: Using DST as the gold standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 98.2%, 98.7%, and 0.97 for RIF; 92.8%, 99%, and 0.90 for INH; 82.4%, 98.0%, and 0.82 for EMB; and 92.6%, 99.5%, and 0.94 for MXF, respectively. Compared with WGS as the reference standard, the sensitivity, specificity, and kappa values of the MALDI-TOF-MS assay for the detection of resistance were 97.4%, 100.0%, and 0.98 for RIF; 98.7%, 92.9%, and 0.92 for INH; 96.3%, 100.0%, and 0.98 for EMB; 98.1%, 100.0%, and 0.99 for MXF; 98.0%, 100.0%, and 0.98 for SM; and 50.0%, 100.0%, and 0.65 for PZA.

CONCLUSION: The nucleotide MALDI-TOF-MS assay yielded highly consistent results compared to DST and WGS, suggesting that it is a promising tool for the rapid detection of sensitivity to RIF, INH, EMB, and MXF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app