Add like
Add dislike
Add to saved papers

Using machine learning algorithms to predict the prognosis of advanced nasopharyngeal carcinoma after intensity-modulated radiotherapy.

BACKGROUND: The prognosis of advanced nasopharyngeal carcinoma (NPC) patients after intensity-modulated radiotherapy (IMRT) has not been well studied. We aimed to construct prognostic models for advanced NPC patients with stage III-IV after their first treatment with IMRT by using machine learning algorithms and to identify the most important predictors.

METHODS: A total of 427 patients treated in MeiZhou City People's Hospital in Guangzhou province, China from January 1, 2013 to December 12, 2018 were enrolled in this study, with an average follow-up period of 7.16 years from July 2020 to March 2021. Candidate predictors were selected from demographics, clinical features, medical examinations and test results. Three machine learning algorithms were applied to construct advanced NPC prognostic models: logistic regression (LR), decision tree (DT), and random forest (RF). Area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. The important predictors of the optimal model for unfavourable prognosis were identified and ranked.

RESULTS: There were 50 (11.7%) NPC-related deaths observed in this study. The mean age of all participants was 49.39±11.29 years, of whom 299 (70.0%) were males. In general, RF showed the best predictive performance with the highest AUC (0.753, 95% CI: 0.609, 0.896), compared to LR (0.736, 95% confidence interval (CI): 0.590, 0.881), and DT (0.720, 95% CI: 0.520, 0.921). The six most important predictors identified by RF were Epstein-Barr virus deoxyribonucleic acid, aspartate aminotransferase, body mass index, age, blood glucose level, and alanine aminotransferase.

CONCLUSIONS: We proposed RF as a simple and accurate tool for the evaluation of the prognosis of advanced NPC patients after the treatment with IMRT in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app