Add like
Add dislike
Add to saved papers

Effect of surface ligands on the photoinduced electron transfer rate and efficiency in ZnO quantum dots and graphene oxide assemblies.

Apart from biocompatibility, ZnO quantum dots (QDs) are considered to be an efficient luminescence material due to their low cost and high redox potential. Here, we report the synthesis of ZnO QDs by using five different functionalizing ligands like mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), octadecene (ODE), ethylene glycol (EG), and oleyl amine (OLA) and fabricate their assemblies with graphene oxide (GO). We investigate the role of functionalizing ligands as a surface modifier of ZnO QDs for their attachment to GO. The steady-state photoluminescence (SSPL) and time-resolved photoluminescence (TRPL) analyses demonstrate the photoluminescence (PL) quenching of ZnO QDs in ZnO QDs-GO assembly. The highest reduction in PL intensity is observed with ZnO QDs-GO assembly with EG as a surface functionalizing ligand. Cyclic voltammetry (CV) analysis confirms the feasibility of charge transfer from ZnO QDs to the GO. The maximum (79.43%) charge transfer efficiency (ECT ) is observed in the case of ZnO-MAA-GO as compared to other assemblies. This means the thiol group-containing ligands facilitate charge transfer as compared to hydroxyl and amine group ligands. This leads to the conclusion that charge transfer in ZnO QDs-GO assemblies depends strongly on the nature of surface ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app