Add like
Add dislike
Add to saved papers

A coumarin-modified graphene quantum dot-based luminogen for the detection of cysteine in aqueous media.

A biocompatible fluorescence sensor for cysteine detection receives wide appreciation recently, because of its importance in the medical field. Functionalized graphene quantum dots (GQDs) are recently emerging biocompatible quantum dots, which are considered as suitable candidates for biomolecule detection. Motivated by this concept, here we have developed a versatile fluorescent probe based on 3-aminocoumarin (AMC) functionalized GQDs for the detection of cysteine (Cys). Modification on GQD with AMC resulted in a stable fluorescent probe with an enhancement in quantum yield of about 84% and 40 nm redshift in emission peak compared with bare GQD. The modified GQD is then used for the sensitive and selective detection of cysteine in aqueous media. The detection of Cys within the linear range of 50 nM to 1.5 μM was achieved with a detection limit (LOD) of 0.86 nM. Here, the AMC-GQD exhibit a turn-off fluorescence sensing behavior. The quenching mechanism was also explored. The sensing process follows dynamic quenching mechanism, which is attributed to the photoinduced charge transfer from AMC-GQD to Cys. The Stern-Volmer plot, energy-level alignment obtained from cyclic voltammetry measurements and density functional theory predictions give a valid proof for this. Furthermore, the sensor was applied efficiently to the determination of Cys in real water samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app