Add like
Add dislike
Add to saved papers

Maternal microbiota communicates with the fetus through microbiota-derived extracellular vesicles.

Microbiome 2023 November 14
BACKGROUND: Reports regarding the presence of bacteria in the fetal environment remain limited and controversial. Recently, extracellular vesicles secreted by the human gut microbiota have emerged as a novel mechanism for host-microbiota interaction. We aimed to investigate the presence of bacterial extracellular vesicles in the fetal environment during healthy pregnancies and determine whether extracellular vesicles derived from the gut microbiota can cross biological barriers to reach the fetus.

RESULTS: Bacterial extracellular vesicles were detectable in the amniotic fluid of healthy pregnant women, exhibiting similarities to extracellular vesicles found in the maternal gut microbiota. In pregnant mice, extracellular vesicles derived from human maternal gut microbiota were found to reach the intra-amniotic space.

CONCLUSIONS: Our findings reveal maternal microbiota-derived extracellular vesicles as an interaction mechanism between the maternal microbiota and fetus, potentially playing a pivotal role in priming the prenatal immune system for gut colonization after birth. Video Abstract.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app