We have located links that may give you full text access.
Clinical Trial, Phase III
Journal Article
Randomized Controlled Trial
Restrictive or Liberal Transfusion Strategy in Myocardial Infarction and Anemia.
New England Journal of Medicine 2023 December 28
BACKGROUND: A strategy of administering a transfusion only when the hemoglobin level falls below 7 or 8 g per deciliter has been widely adopted. However, patients with acute myocardial infarction may benefit from a higher hemoglobin level.
METHODS: In this phase 3, interventional trial, we randomly assigned patients with myocardial infarction and a hemoglobin level of less than 10 g per deciliter to a restrictive transfusion strategy (hemoglobin cutoff for transfusion, 7 or 8 g per deciliter) or a liberal transfusion strategy (hemoglobin cutoff, <10 g per deciliter). The primary outcome was a composite of myocardial infarction or death at 30 days.
RESULTS: A total of 3504 patients were included in the primary analysis. The mean (±SD) number of red-cell units that were transfused was 0.7±1.6 in the restrictive-strategy group and 2.5±2.3 in the liberal-strategy group. The mean hemoglobin level was 1.3 to 1.6 g per deciliter lower in the restrictive-strategy group than in the liberal-strategy group on days 1 to 3 after randomization. A primary-outcome event occurred in 295 of 1749 patients (16.9%) in the restrictive-strategy group and in 255 of 1755 patients (14.5%) in the liberal-strategy group (risk ratio modeled with multiple imputation for incomplete follow-up, 1.15; 95% confidence interval [CI], 0.99 to 1.34; P = 0.07). Death occurred in 9.9% of the patients with the restrictive strategy and in 8.3% of the patients with the liberal strategy (risk ratio, 1.19; 95% CI, 0.96 to 1.47); myocardial infarction occurred in 8.5% and 7.2% of the patients, respectively (risk ratio, 1.19; 95% CI, 0.94 to 1.49).
CONCLUSIONS: In patients with acute myocardial infarction and anemia, a liberal transfusion strategy did not significantly reduce the risk of recurrent myocardial infarction or death at 30 days. However, potential harms of a restrictive transfusion strategy cannot be excluded. (Funded by the National Heart, Lung, and Blood Institute and others; MINT ClinicalTrials.gov number, NCT02981407.).
METHODS: In this phase 3, interventional trial, we randomly assigned patients with myocardial infarction and a hemoglobin level of less than 10 g per deciliter to a restrictive transfusion strategy (hemoglobin cutoff for transfusion, 7 or 8 g per deciliter) or a liberal transfusion strategy (hemoglobin cutoff, <10 g per deciliter). The primary outcome was a composite of myocardial infarction or death at 30 days.
RESULTS: A total of 3504 patients were included in the primary analysis. The mean (±SD) number of red-cell units that were transfused was 0.7±1.6 in the restrictive-strategy group and 2.5±2.3 in the liberal-strategy group. The mean hemoglobin level was 1.3 to 1.6 g per deciliter lower in the restrictive-strategy group than in the liberal-strategy group on days 1 to 3 after randomization. A primary-outcome event occurred in 295 of 1749 patients (16.9%) in the restrictive-strategy group and in 255 of 1755 patients (14.5%) in the liberal-strategy group (risk ratio modeled with multiple imputation for incomplete follow-up, 1.15; 95% confidence interval [CI], 0.99 to 1.34; P = 0.07). Death occurred in 9.9% of the patients with the restrictive strategy and in 8.3% of the patients with the liberal strategy (risk ratio, 1.19; 95% CI, 0.96 to 1.47); myocardial infarction occurred in 8.5% and 7.2% of the patients, respectively (risk ratio, 1.19; 95% CI, 0.94 to 1.49).
CONCLUSIONS: In patients with acute myocardial infarction and anemia, a liberal transfusion strategy did not significantly reduce the risk of recurrent myocardial infarction or death at 30 days. However, potential harms of a restrictive transfusion strategy cannot be excluded. (Funded by the National Heart, Lung, and Blood Institute and others; MINT ClinicalTrials.gov number, NCT02981407.).
Full text links
Related Resources
Trending Papers
Updated evidence on cardiovascular and renal effects of GLP-1 receptor agonists and combination therapy with SGLT2 inhibitors and finerenone: a narrative review and perspectives.Cardiovascular Diabetology 2024 November 15
Pharmacologic Treatment of Pulmonary Hypertension Due to Heart Failure with Preserved Ejection Fraction: Are There More Arrows on Our Bow?Journal of Clinical Medicine 2024 November 14
Guidelines for the Prevention, Diagnosis, and Management of Urinary Tract Infections in Pediatrics and Adults: A WikiGuidelines Group Consensus Statement.JAMA Network Open 2024 November 4
Autoantibodies in neuromuscular disorders: a review of their utility in clinical practice.Frontiers in Neurology 2024
Methods for determining optimal positive end-expiratory pressure in patients undergoing invasive mechanical ventilation: a scoping review.Canadian Journal of Anaesthesia 2024 November 20
Cardiac Failure and Cardiogenic Shock: Insights Into Pathophysiology, Classification, and Hemodynamic Assessment.Curēus 2024 October
The Management of Interstitial Lung Disease in the ICU: A Comprehensive Review.Journal of Clinical Medicine 2024 November 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app