Add like
Add dislike
Add to saved papers

A pelvic kinematic approach for calculating hip angles for active hip disarticulation prosthesis control.

BACKGROUND: Control system design for a microprocessor-controlled hip-knee-ankle-foot (HKAF) prosthesis is a challenge since hip disarticulation amputees lack the entire leg and, therefore, only have pelvis movement as user-guided input. This research proposes a method for determining hip joint angles from pelvis movement in a control system for the next generation of powered prostheses.

METHOD: Three-dimensional pelvic motion and stance time of 10 transfemoral (TF) prosthetic users were used to identify important features and to develop an algorithm to calculate hip angles from pelvis movement based on correlation and linear regression results. The algorithm was then applied to a separate (independent) TF group to validate algorithm performance.

RESULTS: The proposed algorithm calculated viable hip angles during walking by utilizing pelvic rotation, pelvic tilt, and stance time. Small angular differences were found between the algorithm results and motion capture data. The greatest difference was for hip maximum extension angle (2.5 ± 2.0°).

CONCLUSIONS: Since differences between algorithm output and motion data were within participant standard deviations, the developed algorithm could be used to determine the desired hip angle from pelvis movements. This study will aid the future development of gait control systems for new active HKAF prostheses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app