Add like
Add dislike
Add to saved papers

Validation of 3D printed MAYO tubes and stethoscope in simulated medical environment - Tools fabricated with additive manufacturing for emergency care.

Heliyon 2023 October
Emergency and disaster medical care often face resource or equipment shortages. 3D printing technology has been proven to be effective in cases with insufficient supply chains. MAYO tubes and stethoscopes are essential components of ABCDE patient examinations; however, 3D-printed variants have not been fully tested. These 3D-printed instruments were substituted and validated in a simulated pre-hospital environment. In total, 26 participants were included in this study. Fifteen clinicians or paramedics with at least 3 years of professional experience and 10 medical students. One student was excluded because he had relevant experience with emergency care. As basic tasks, the placement of MAYO tubes and auscultation with stethoscopes were performed using medical simulators. 3D printed instruments were compared with conventional clinical devices by measuring the time required for the intervention, success rate, and user satisfaction. In the study FFF (Fused Filament Fabrication (FFF), SLS (Selective Laser Sintering (SLS), and SLA (stereolithography) 3D printing were used in this study. The times required for implementation and auscultation were examined for each instrument. There was no significant difference between the MAYO tube (p = 0.798) and the stethoscope (p = 0.676). In the case of stethoscopy, the study investigated the correct diagnosis, and no significant difference was found (p = 0.239), although an interesting trend was observed. Regarding the MAYO tube, the study found no significant difference in correct position formation (p = 0.163). The experience levels of the groups did not influence these factors. However, significant differences in user satisfaction were found in both cases in favour of the conventional versions (p < 0.001). Overall, the results of this study suggest that 3D-printed devices could be suitable replacements for clinic-based devices in emergency situations. The 3D-printed devices did not perform inferiorly at any of the indicated points compared to their classical counterparts. However, the practical applicability of the devices used in this study requires further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app