Add like
Add dislike
Add to saved papers

Loss of the methylarginine reader function of SND1 confers resistance to hepatocellular carcinoma.

Biochemical Journal 2023 October 32
Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that "reads" methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app