Add like
Add dislike
Add to saved papers

Age-dependent down-regulation of orexin receptors in trigeminal nucleus caudalis correlated with attenuation of orexinergic analgesia in rats.

Experimental Gerontology 2023 October 27
Aging is related to a variety of physiological organ changes, including central and peripheral nervous systems. It has been reported that the orexin signaling has a potential analgesic effect in different models of pain, especially inflammatory pulpal pain. However, the age-induced alteration in dental pain perception and orexin analgesia has not yet been fully elucidated. Here, we tested that how aging may change the effect of orexin-A on nociceptive behaviors in a rat dental pulp pain model. The expression levels of orexin receptors and the nociceptive neuropeptides substance P (SP) and calcitonin-related gene peptide (CGRP) were also assessed in the trigeminal nucleus caudalis (TNC) of young and aged rats. Dental pulp pain was induced by intradental application of capsaicin (100 μg). The immunofluorescence technique was used to evaluate the expression levels. The results show less efficiency of orexin-A to ameliorate pain perception in aged rats as compared to young rats. In addition, a significant decrease in the number of orexin 1 and 2 receptors was observed in the TNC of aged as compared to young rats. Dental pain-induced SP and CGRP overexpression was also significantly inhibited by orexin-A injection into the TNC of young animals. In contrast, orexin-A could not produce such effects in the aged animals. In conclusion, the older age-related reduction of the antinociceptive effect of orexin may be due to the downregulation of its receptors and inability of orexin signaling to inhibit the expression of nociceptive neuropeptides such as SP and CGRP in aged rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app