Journal Article
Review
Add like
Add dislike
Add to saved papers

Biomarkers for Assessing Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus on Sodium-Glucose Cotransporter 2 Inhibitor Therapy.

In the current modern era of unhealthy lifestyles, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and has become a serious global health problem. To date, there is no approved pharmacotherapy for the treatment of NAFLD, and necessary lifestyle changes such as weight loss, diet, and exercise are usually not sufficient to manage this disease. Patients with type 2 diabetes mellitus (T2DM) have a significantly higher risk of developing NAFLD and vice versa. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic agents that have recently been approved for two other indications: chronic kidney disease and heart failure in diabetics and non-diabetics. They are also emerging as promising new agents for NAFLD treatment, as they have shown beneficial effects on hepatic inflammation, steatosis, and fibrosis. Studies in animals have reported favorable effects of SGLT2 inhibitors, and studies in patients also found positive effects on body mass index (BMI), insulin resistance, glucose levels, liver enzymes, apoptosis, and transcription factors. There are some theories regarding how SGLT2 inhibitors affect the liver, but the exact mechanism is not yet fully understood. Therefore, biomarkers to evaluate underlying mechanisms of action of SGLT2 inhibitors on the liver have now been scrutinized to assess their potential as a future in-label therapy for NAFLD. In addition, finding suitable non-invasive biomarkers could be helpful in clinical practice for the early detection of NAFLD in patients. This is crucial for a positive disease outcome. The aim of this review is to provide an overview of the most recent findings on the effects of SGLT2 inhibitors on NAFLD biomarkers and the potential of SGLT2 inhibitors to successfully treat NAFLD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app