Add like
Add dislike
Add to saved papers

TMPyP-mediated photoinactivation of Pseudomonas aeruginosa improved in the presence of a cationic polymer.

Pseudomonas aeruginosa is one of the most refractory organisms to antibiotic treatment and appears to be one of the least susceptible to photodynamic treatment. TMPyP is effective in the photoinactivation of P. aeruginosa, and the co-administration with the cationic polymer Eudragit®-E100 (Eu) potentiates this effect against isolates both sensitive and resistant to antibiotics. The fluorescent population (>98%) observed by flow cytometry after exposure to Eu + TMPyP remained unchanged after successive washings, indicating a stronger interaction/internalization of TMPyP in the bacteria, which could be attributed to the rapid neutralization of surface charges. TMPyP and Eu produced depolarization of the cytoplasmic membrane, which increased when both cationic compounds were combined. Using confocal laser scanning microscopy, heterogeneously distributed fluorescent areas were observed after TMPyP exposure, while homogeneous fluorescence and enhanced intensity were observed with Eu + TMPyP. The polymer caused alterations in the bacterial envelopes that contributed to a deeper and more homogeneous interaction/internalization of TMPyP, leading to a higher probability of damage by cytotoxic ROS and explaining the enhanced result of photodynamic inactivation. Therefore, Eu acts as an adjuvant without being by itself capable of eradicating this pathogen. Moreover, compared with other therapies, this combinatorial strategy with a polymer approved for pharmaceutical applications presents advantages in terms of toxicity risks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app