We have located links that may give you full text access.
Prediction of visual field progression with serial optic disc photographs using deep learning.
British Journal of Ophthalmology 2023 October 13
AIM: We tested the hypothesis that visual field (VF) progression can be predicted with a deep learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier time points during follow-up.
METHODS: 3919 eyes (2259 patients) with ≥2 ODPs at least 2 years apart, and ≥5 24-2 VF exams spanning ≥3 years of follow-up were included. Serial VF mean deviation (MD) rates of change were estimated starting at the fifth visit and subsequently by adding visits until final visit. VF progression was defined as a statistically significant negative slope at two consecutive visits and final visit. We built a twin-neural network with ResNet50-backbone. A pair of ODPs acquired up to a year before the VF progression date or the last VF in non-progressing eyes were included as input. Primary outcome measures were area under the receiver operating characteristic curve (AUC) and model accuracy.
RESULTS: The average (SD) follow-up time and baseline VF MD were 8.1 (4.8) years and -3.3 (4.9) dB, respectively. VF progression was identified in 761 eyes (19%). The median (IQR) time to progression in progressing eyes was 7.3 (4.5-11.1) years. The AUC and accuracy for predicting VF progression were 0.862 (0.812-0.913) and 80.0% (73.9%-84.6%). When only fast-progressing eyes were considered (MD rate < -1.0 dB/year), AUC increased to 0.926 (0.857-0.994).
CONCLUSIONS: A deep learning model can predict subsequent glaucoma progression from longitudinal ODPs with clinically relevant accuracy. This model may be implemented, after validation, for predicting glaucoma progression in the clinical setting.
METHODS: 3919 eyes (2259 patients) with ≥2 ODPs at least 2 years apart, and ≥5 24-2 VF exams spanning ≥3 years of follow-up were included. Serial VF mean deviation (MD) rates of change were estimated starting at the fifth visit and subsequently by adding visits until final visit. VF progression was defined as a statistically significant negative slope at two consecutive visits and final visit. We built a twin-neural network with ResNet50-backbone. A pair of ODPs acquired up to a year before the VF progression date or the last VF in non-progressing eyes were included as input. Primary outcome measures were area under the receiver operating characteristic curve (AUC) and model accuracy.
RESULTS: The average (SD) follow-up time and baseline VF MD were 8.1 (4.8) years and -3.3 (4.9) dB, respectively. VF progression was identified in 761 eyes (19%). The median (IQR) time to progression in progressing eyes was 7.3 (4.5-11.1) years. The AUC and accuracy for predicting VF progression were 0.862 (0.812-0.913) and 80.0% (73.9%-84.6%). When only fast-progressing eyes were considered (MD rate < -1.0 dB/year), AUC increased to 0.926 (0.857-0.994).
CONCLUSIONS: A deep learning model can predict subsequent glaucoma progression from longitudinal ODPs with clinically relevant accuracy. This model may be implemented, after validation, for predicting glaucoma progression in the clinical setting.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app