JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Nuclear control of vascular smooth muscle cell plasticity during vascular remodeling.

Control of vascular smooth muscle cell (SMC) gene expression is an essential process for establishing and maintaining lineage identity, contractility, and plasticity. Most mechanisms (epigenetic, transcriptional, and post-transcriptional) implicated in gene regulation occur in the nucleus. Still, intranuclear pathways are directly impacted by modifications in the extracellular environment in conditions of adaptive or maladaptive remodeling. Integration of extracellular, cellular, and genomic information into the nucleus through epigenetic and transcriptional control of genome organization plays a major role in regulating SMC functions and phenotypic transitions during vascular remodeling and diseases. This review aims to provide a comprehensive update on nuclear mechanisms, their interactions, and their integration in controlling SMC homeostasis and dysfunction. We will summarize and discuss the main nuclear mechanisms preponderant in SMCs in the context of vascular disease, such as atherosclerosis, with an emphasis on studies employing in vivo cell-specific loss of function and single-cell omics approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app