We have located links that may give you full text access.
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Imaging Tumor-Targeting Bacteria Using 18F-Fluorodeoxysorbitol Positron Emission Tomography.
Journal of Infectious Diseases 2023 October 4
BACKGROUND: Microbial-based cancer treatments are an emerging field, with multiple bacterial species evaluated in animal models and some advancing to clinical trials. Noninvasive bacteria-specific imaging approaches can potentially support the development and clinical translation of bacteria-based cancer treatments by assessing the tumor and off-target bacterial colonization.
METHODS: 18F-Fluorodeoxysorbitol (18F-FDS) positron emission tomography (PET), a bacteria-specific imaging approach, was used to visualize an attenuated strain of Yersinia enterocolitica, currently in clinical trials as a microbial-based cancer treatment, in murine models of breast cancer.
RESULTS: Y. enterocolitica demonstrated excellent 18F-FDS uptake in in vitro assays. Whole-body 18F-FDS PET demonstrated a significantly higher PET signal in tumors with Y. enterocolitica colonization compared to those not colonized, in murine models utilizing direct intratumor or intravenous administration of bacteria, which were confirmed using ex vivo gamma counting. Conversely, 18F-fluorodeoxyglucose (18F-FDG) PET signal was not different in Y. enterocolitica colonized versus uncolonized tumors.
CONCLUSIONS: Given that PET is widely used for the management of cancer patients, 18F-FDS PET could be utilized as a complementary approach supporting the development and clinical translation of Y. enterocolitica-based tumor-targeting bacterial therapeutics.
METHODS: 18F-Fluorodeoxysorbitol (18F-FDS) positron emission tomography (PET), a bacteria-specific imaging approach, was used to visualize an attenuated strain of Yersinia enterocolitica, currently in clinical trials as a microbial-based cancer treatment, in murine models of breast cancer.
RESULTS: Y. enterocolitica demonstrated excellent 18F-FDS uptake in in vitro assays. Whole-body 18F-FDS PET demonstrated a significantly higher PET signal in tumors with Y. enterocolitica colonization compared to those not colonized, in murine models utilizing direct intratumor or intravenous administration of bacteria, which were confirmed using ex vivo gamma counting. Conversely, 18F-fluorodeoxyglucose (18F-FDG) PET signal was not different in Y. enterocolitica colonized versus uncolonized tumors.
CONCLUSIONS: Given that PET is widely used for the management of cancer patients, 18F-FDS PET could be utilized as a complementary approach supporting the development and clinical translation of Y. enterocolitica-based tumor-targeting bacterial therapeutics.
Full text links
Trending Papers
The ten commandments of point-of-care ultrasound (POCUS).CJEM 2023 November 17
Restrictive or Liberal Transfusion Strategy in Myocardial Infarction and Anemia.New England Journal of Medicine 2023 November 12
Cushing's syndrome.Lancet 2023 November 18
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app