Add like
Add dislike
Add to saved papers

TSC2 S1365A mutation potently regulates CD8+T cell function and differentiation improving adoptive cellular cancer therapy.

JCI Insight 2023 October 4
MTORC1 integrates signaling from the immune microenvironment to regulate T cell activation, differentiation, and function. TSC2 in the tuberous sclerosis complex tightly regulates mTORC1 activation. CD8+ T cells lacking TSC2 have constitutively enhanced mTORC1 activity and generate robust effector T cells; however sustained mTORC1 activation prevents generation of long-lived memory CD8+ T cells. Here we show manipulating TSC2 at Ser1365 potently regulates activated but not basal mTORC1 signaling in CD8+ T cells. Unlike non-stimulated TSC2 knockout cells, CD8+ T cells expressing a phospho-silencing mutant TSC2-S1365A (SA) retain normal basal mTORC1 activity. PKC and T-cell Receptor (TCR) stimulation induces TSC2 S1365 phosphorylation and preventing this with the SA mutation markedly increases mTORC1 activation and T-cell effector function. Consequently, SA CD8+ T cells display greater effector responses while retaining their capacity to become long-lived memory T cells. SA CD8+ T cells also display enhanced effector function under hypoxic and acidic conditions. In murine and human solid-tumor models, CD8+ SA T cells used as adoptive cell therapy display greater anti-tumor immunity than WT CD8+ T cells. These findings reveal an upstream mechanism to regulate mTORC1 activity in T cells. The TSC2-SA mutation enhances both T cell effector function and long-term persistence/memory formation, supporting an approach to engineer better CAR-T cells for treating cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app