Add like
Add dislike
Add to saved papers

DPSeq: A Novel and Efficient Digital Pathology Classifier for Predicting Cancer Biomarkers Using Sequencer Architecture.

In digital pathology tasks, transformers have achieved state-of-the-art results, surpassing convolutional neural networks (CNNs). However, transformers are usually complex and resource intensive. In this study, we developed a novel and efficient digital pathology classifier called DPSeq, to predict cancer biomarkers through fine-tuning a sequencer architecture integrating horizon and vertical bidirectional long short-term memory networks. Using hematoxylin and eosin-stained histopathologic images of colorectal cancer from two international data sets (The Cancer Genome Atlas and Molecular and Cellular Oncology), the predictive performance of DPSeq was evaluated in a series of experiments. DPSeq demonstrated exceptional performance for predicting key biomarkers in colorectal cancer (microsatellite instability status, hypermutation, CpG island methylator phenotype status, BRAF mutation, TP53 mutation, and chromosomal instability), outperforming most published state-of-the-art classifiers in a within-cohort internal validation and a cross-cohort external validation. In addition, under the same experimental conditions using the same set of training and testing data sets, DPSeq surpassed four CNNs (ResNet18, ResNet50, MobileNetV2, and EfficientNet) and two transformer (Vision Transformer and Swin Transformer) models, achieving the highest area under the receiver operating characteristic curve and area under the precision-recall curve values in predicting microsatellite instability status, BRAF mutation, and CpG island methylator phenotype status. Furthermore, DPSeq required less time for both training and prediction because of its simple architecture. Therefore, DPSeq appears to be the preferred choice over transformer and CNN models for predicting cancer biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app