Add like
Add dislike
Add to saved papers

Photocatalytic oxygenation of sulfide using solar light and ingenious GQDs@AQ catalyst: Mechanistic and synthetic investigations.

The combination of excellent electronic properties and thermal stability positions orange-derived graphene quantum dots (GQDs) as promising materials for solar light-based applications. Researchers are actively exploring their potential in fields such as photovoltaics, photocatalysis, optoelectronics, and energy storage. Their abundance, cost-effectiveness, and eco-friendly nature further contribute to their growing relevance in cutting-edge scientific research. Furthermore, only GQDs are not much more effective in the UV-visible region, therefore, required band gap engineering in GQDs material. In this context, we designed GQDs-based light harvesting materials, which is active in UV-visible region. Herein we synthesized GQDs coupled with 2,6-diaminoanthrquninone (AQ), that is, GQDs@AQ light harvesting photocatalyst the first time for the oxidation of sulfide to sulfoxide under visible light. For the integrating reactions of sulfide in aerobic conditions under visible light by GQDs@AQ photocatalyst exhibit utmost higher photocatalytic activity than simple GQDs due to low molar extinction coefficient and slow recombination charges. The use of GQDs@AQ light harvesting photocatalyst, showed the excellent organic transformation efficiency of sulfide to sulfoxide with excellent yield (94%). The high efficiency and excellent yield of 94% indicate the effectiveness of GQDs@AQ as a photocatalyst for these specific organic transformations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app