We have located links that may give you full text access.
Biosensor-Based Multiple Cross Displacement Amplification for the Rapid Detection of Mycobacterium leprae .
ACS Infectious Diseases 2023 September 22
Leprosy is an ancient disease caused by Mycobacterium leprae (ML) that remains a public health problem in poverty-stricken areas worldwide. Although many ML detection techniques have been used, a rapid and sensitive tool is essential for the early detection and treatment of leprosy. Herein, we developed a rapid ML detection technique by combining multiple cross displacement amplification (MCDA) with a nanoparticle-based lateral flow biosensor (LFB), termed ML-MCDA-LFB. MCDA induced a rapid isothermal reaction using specific primers targeting the RLEP gene, and the LFB enabled instant visual amplicon detection. The pure genomic DNA of ML and nucleic acids from various pathogens were employed to evaluate and optimize the ML-MCDA-LFB assay. The optimal conditions for ML-MCDA-LFB were 68 °C and 35 min, respectively. The limit of detection for pure ML genomic DNA was 150 fg per vessel, and the specificity of detection was 100% for the experimental strains. Additionally, the entire detection process could be performed within 40 min, including the isothermal amplification (35 min) and result confirmation (1-2 min). Hence, the ML-MCDA-LFB assay was shown to be a rapid, sensitive, and visual method for detecting ML and could be used as a potential tool for early clinical diagnosis and field screening of leprosy.
Full text links
Related Resources
Trending Papers
Central venous catheter insertion site and infection prevention in 2024.Intensive Care Medicine 2024 September 30
Novel Insights into Diabetic Kidney Disease.International Journal of Molecular Sciences 2024 September 23
2024 ESC Guidelines for the management of elevated blood pressure and hypertension.European Heart Journal 2024 August 30
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app