Add like
Add dislike
Add to saved papers

Development and evaluation of a predictive algorithm and telehealth intervention to reduce suicidal behavior among university students.

Psychological Medicine 2023 September 21
BACKGROUND: Suicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk.

METHODS: Data come from s everal waves of a prospective cohort study (2016-2022) of college students ( n = 5454). All first-year students were invited to participate as volunteers. (Response rates range: 16.00-19.93%). A stepped-care approach was implemented: (i) all students received a comprehensive list of services; (ii) those reporting past 12-month suicidal ideation were directed to a safety planning application; (iii) those identified as high risk of suicidal behavior by the algorithm or reporting 12-month suicide attempt were contacted via telephone within 24-h of survey completion. Intervention focused on support/safety-planning, and referral to services for this high-risk group.

RESULTS: 5454 students ranging in age from 17-36 (s.d. = 5.346) participated; 65% female. The algorithm identified 77% of students reporting subsequent suicidal behavior in the top 15% of predicted probabilities (Sensitivity = 26.26 [95% CI 17.93-36.07]; Specificity = 97.46 [95% CI 96.21-98.38], PPV = 53.06 [95% CI 40.16-65.56]; AUC range: 0.895 [95% CIs 0.872-0.917] to 0.966 [95% CIs 0.939-0.994]). High-risk students in the Intervention Cohort showed a 41.7% reduction in probability of suicidal behavior at 12-month follow-up compared to high-risk students in the Control Cohort.

CONCLUSIONS: Predictive risk algorithms embedded into universal screening, coupled with telehealth intervention, offer significant potential as a suicide prevention approach for students.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app