Add like
Add dislike
Add to saved papers

Lagging effects and prediction of pollutants and their interaction modifiers on influenza in northeastern China.

BMC Public Health 2023 September 20
BACKGROUND: Previous studies have typically explored the daily lagged relations between influenza and meteorology, but few have explored seasonally the monthly lagged relationship, interaction and multiple prediction between influenza and pollution. Our specific objectives are to evaluate the lagged and interaction effects of pollution factors and construct models for estimating influenza incidence in a hierarchical manner.

METHODS: Our researchers collect influenza case data from 2005 to 2018 with meteorological and contaminative factors in Northeast China. We develop a generalized additive model with up to 6 months of maximum lag to analyze the impact of pollution factors on influenza cases and their interaction effects. We employ LASSO regression to identify the most significant environmental factors and conduct multiple complex regression analysis. In addition, quantile regression is taken to model the relation between influenza morbidity and specific percentiles (or quantiles) of meteorological factors.

RESULTS: The influenza epidemic in Northeast China has shown an upward trend year by year. The excessive incidence of influenza in Northeast China may be attributed to the suspected primary air pollutant, NO2 , which has been observed to have overall low levels during January, March, and June. The Age 15-24 group shows an increase in the relative risk of influenza with an increase in PM2.5 concentration, with a lag of 0-6 months (ERR 1.08, 95% CI 0.10-2.07). In the quantitative analysis of the interaction model, PM10 at the level of 100-120 μg/m3 , PM2.5 at the level of 60-80 μg/m3 , and NO2 at the level of 60 μg/m3 or more have the greatest effect on the onset of influenza. The GPR model behaves better among prediction models.

CONCLUSIONS: Exposure to the air pollutant NO2 is associated with an increased risk of influenza with a cumulative lag effect. Prioritizing winter and spring pollution monitoring and influenza prediction modeling should be our focus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app