Add like
Add dislike
Add to saved papers

Boningmycin induces AMPK-mediated endoplasmic reticulum-associated degradation of PD-L1 protein in human cancer cells.

Anti-PD-1/PD-L1 monoclonal antibodies have displayed remarkable clinical benefits and revolutionized the treatment of multiple tumor types, but the low response rates and immune-related adverse events limit their application, which promoting the development of small molecule agents to improve the efficacy of PD-1/PD-L1 blockade therapy. Boningmycin (BON), a new small molecule belonging to bleomycin (BLM) family, exhibits potent anticancer activity in vitro and in vivo, as well as negligible lung toxicity, thereby can be an alternative of BLM. However, understandings about the anticancer mechanism of BLM-related compounds are extremely rare, it remains unclear if they affect PD-L1 level in a manner similar to that of other antitumor drugs. In this study, we discover that BON significantly reduces PD-L1 protein level in NCI-H460 and HT-1080 cells. Meanwhile, BON decreases the protein level of PD-L1 in a tumor xenograft model of NCI-H460 cells. Nevertheless, the mRNA level is not influenced after BON exposure. Furthermore, BON-induced PD-L1 reduction is proteasome- dependent. By using specific inhibitors and RNA interference technology, we confirm that the decline of PD-L1 protein by BON is mediated by AMPK-activated endoplasmic reticulum-associated degradation pathway, which is like to the action of metformin. Last but not the least, BON has synergism on gefitinib in vitro and in vivo. In conclusion, it is the first report demonstrating that BON decreases PD-L1 protein level through AMPK-mediated endoplasmic reticulum-associated degradation pathway. These findings will benefit the clinical transformation of BON and aid in the elucidation of molecular mechanism of BLM-related compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app