We have located links that may give you full text access.
Identifying immuno-related diagnostic genes and immune infiltration signatures for periodontitis and alopecia areata.
International Immunopharmacology 2023 September 16
BACKGROUND: Although there have been indications that periodontitis (PD) may be susceptible to alopecia areata (AA), the underlying mechanism of its pathogenesis remains poorly understood. The objective of our study is to conduct further research into the occurrence of this complication.
METHODS: The gene expression omnibus (GEO) database was the source of acquisition for both PD and AA datasets. Various methods, including the differentially expressed genes (DEGs) analysis, functional enrichment analysis, protein-protein interaction (PPI) network construction, Cytohubba algorithms, and RandomForest algorithms, were utilized to identify candidate hub immuno-related genes (IRGs) for diagnosing AA with PD. The diagnostic efficacy was assessed by constructing receiver operating characteristic (ROC) curves. To further deepen our understanding, immune cell infiltration, flow cytometry assay, and immunofluorescence techniques were employed to uncover immune cell dysregulation in PD and AA.
RESULTS: 899 and 803 DEGs were detected in AA and PD, respectively, with an intersection of 150 common DEGs enriched in immune regulation. Further analysis of the junction of shared DEGs and IRGs was analyzed using the PPI network, Mcode, and Cytohubba algorithms. Three hub genes (CTSS, IL2RG, and ITGAL) were subsequently selected by Cytohubba and RandomForest algorithms and were found to be promising candidate hub genes with high diagnostic values (AUC ranging from 0.776 to 0.909) for diagnosing AA with PD. Additionally, various dysregulated immune cells were observed, with mast cells potentially serving as markers for AA and plasma for PD.
CONCLUSION: Three candidate hub IRGs (CTSS, IL2RG, and ITGAL) were identified with considerable diagnostic values. Besides, mast cells could serve as markers for AA, while plasma may indicate PD. Our research has the potential to identify shared diagnostic candidate genes and immune cells for AA and PD patients.
METHODS: The gene expression omnibus (GEO) database was the source of acquisition for both PD and AA datasets. Various methods, including the differentially expressed genes (DEGs) analysis, functional enrichment analysis, protein-protein interaction (PPI) network construction, Cytohubba algorithms, and RandomForest algorithms, were utilized to identify candidate hub immuno-related genes (IRGs) for diagnosing AA with PD. The diagnostic efficacy was assessed by constructing receiver operating characteristic (ROC) curves. To further deepen our understanding, immune cell infiltration, flow cytometry assay, and immunofluorescence techniques were employed to uncover immune cell dysregulation in PD and AA.
RESULTS: 899 and 803 DEGs were detected in AA and PD, respectively, with an intersection of 150 common DEGs enriched in immune regulation. Further analysis of the junction of shared DEGs and IRGs was analyzed using the PPI network, Mcode, and Cytohubba algorithms. Three hub genes (CTSS, IL2RG, and ITGAL) were subsequently selected by Cytohubba and RandomForest algorithms and were found to be promising candidate hub genes with high diagnostic values (AUC ranging from 0.776 to 0.909) for diagnosing AA with PD. Additionally, various dysregulated immune cells were observed, with mast cells potentially serving as markers for AA and plasma for PD.
CONCLUSION: Three candidate hub IRGs (CTSS, IL2RG, and ITGAL) were identified with considerable diagnostic values. Besides, mast cells could serve as markers for AA, while plasma may indicate PD. Our research has the potential to identify shared diagnostic candidate genes and immune cells for AA and PD patients.
Full text links
Trending Papers
Restrictive or Liberal Transfusion Strategy in Myocardial Infarction and Anemia.New England Journal of Medicine 2023 November 12
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app