Add like
Add dislike
Add to saved papers

Human muscle cells sensitivity to chikungunya virus infection relies on their glycolysis activity and differentiation stage.

Biochimie 2023 September 15
Changes to our environment have led to the emergence of human pathogens such as chikungunya virus. Chikungunya virus infection is today a major public health concern. It is a debilitating chronic disease impeding patients' mobility, affecting millions of people. Disease development relies on skeletal muscle infection. The importance of skeletal muscle in chikungunya virus infection led to the hypothesis that it could serve as a viral reservoir and could participate to virus persistence. Here we questioned the interconnection between skeletal muscle cells metabolism, their differentiation stage and the infectivity of the chikungunya virus. We infected human skeletal muscle stem cells at different stages of differentiation with chikungunya virus to study the impact of their metabolism on virus production and inversely the impact of virus on cell metabolism. We observed that chikungunya virus infectivity is cell differentiation and metabolism-dependent. Chikungunya virus interferes with the cellular metabolism in quiescent undifferentiated and proliferative muscle cells. Moreover, activation of chikungunya infected quiescent muscle stem cells, induces their proliferation, increases glycolysis and amplifies virus production. Therefore, our results showed that Chikungunya virus infectivity and the antiviral response of skeletal muscle cells relies on their energetic metabolism and their differentiation stage. Then, muscle stem cells could serve as viral reservoir producing virus after their activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app