We have located links that may give you full text access.
Semiquantitative magnetic resonance imaging parameters for differentiating parotid pleomorphic adenoma from Warthin tumor.
Quantitative Imaging in Medicine and Surgery 2023 September 1
BACKGROUND: Accurately distinguishing between pleomorphic adenoma (PA) and Warthin tumor (WT) is beneficial for their respective management. Preoperative magnetic resonance imaging (MRI) can provide valuable information due to its excellent soft tissue contrast. This study explored the value of semiquantitative contrast-enhanced MRI parameters in the differential diagnosis of PA and WT.
METHODS: Data from 106 patients, 62 with PA and 44 with WT (confirmed by histopathology) were retrospectively and consecutively analyzed. The tumor-to-spinal cord contrast ratios (TSc-CR) based on the mean, maximum, and minimum signal intensity (T1 -mean TSc-CR, T1 -max TSc-CR, and T1 -min TSc-CR, respectively) in the early and delayed phases were calculated on contrast-enhanced T1 -weighted images as semiquantitative parameters, and then compared between PA and WT. Receiver operating characteristic (ROC) curve analysis and areas under the curve (AUCs) were used to determine the performance of these parameters in the differential diagnosis of PA from WT.
RESULTS: Except T1 -min TSc-CR in the early phase, all semiquantitative MRI parameters differed significantly between PA and WT (all P<0.05). T1 -max TSc-CR showed higher sensitivity {70.45% [95% confidence interval (CI): 0.548-0.832]} and specificity [70.97% (95% CI: 0.581-0.818)] and had a higher AUC [0.707 (95% CI: 0.610-0.791)] in the early phase when using a cutoff value of 1.89. T1 -max TSc-CR showed higher sensitivity [88.64% (95% CI: 0.754-0.962)], specificity [72.58% (95% CI: 0.598-0.831)], and AUC [0.854 (95% CI: 0.772-0.915)] in the delayed phase when using a cutoff value of 2.33. The sensitivity, specificity, and AUC were improved to 90.91% (95% CI: 0.783-0.975), 93.55% (95% CI: 0.843-0.982), and 0.960 (95% CI: 0.903-0.988), respectively, after combination of all semiquantitative parameters in the early and delayed phases. The two radiologists had excellent interobserver agreement on TSc-CRs [all interclass correlation coefficient (ICC) >0.75].
CONCLUSIONS: Semiquantitative parameters using TSc-CR are valuable in distinguishing PA from WT, and a combination of these parameters can improve the differential diagnostic efficiency.
METHODS: Data from 106 patients, 62 with PA and 44 with WT (confirmed by histopathology) were retrospectively and consecutively analyzed. The tumor-to-spinal cord contrast ratios (TSc-CR) based on the mean, maximum, and minimum signal intensity (T1 -mean TSc-CR, T1 -max TSc-CR, and T1 -min TSc-CR, respectively) in the early and delayed phases were calculated on contrast-enhanced T1 -weighted images as semiquantitative parameters, and then compared between PA and WT. Receiver operating characteristic (ROC) curve analysis and areas under the curve (AUCs) were used to determine the performance of these parameters in the differential diagnosis of PA from WT.
RESULTS: Except T1 -min TSc-CR in the early phase, all semiquantitative MRI parameters differed significantly between PA and WT (all P<0.05). T1 -max TSc-CR showed higher sensitivity {70.45% [95% confidence interval (CI): 0.548-0.832]} and specificity [70.97% (95% CI: 0.581-0.818)] and had a higher AUC [0.707 (95% CI: 0.610-0.791)] in the early phase when using a cutoff value of 1.89. T1 -max TSc-CR showed higher sensitivity [88.64% (95% CI: 0.754-0.962)], specificity [72.58% (95% CI: 0.598-0.831)], and AUC [0.854 (95% CI: 0.772-0.915)] in the delayed phase when using a cutoff value of 2.33. The sensitivity, specificity, and AUC were improved to 90.91% (95% CI: 0.783-0.975), 93.55% (95% CI: 0.843-0.982), and 0.960 (95% CI: 0.903-0.988), respectively, after combination of all semiquantitative parameters in the early and delayed phases. The two radiologists had excellent interobserver agreement on TSc-CRs [all interclass correlation coefficient (ICC) >0.75].
CONCLUSIONS: Semiquantitative parameters using TSc-CR are valuable in distinguishing PA from WT, and a combination of these parameters can improve the differential diagnostic efficiency.
Full text links
Related Resources
Trending Papers
Light chain deposition disease: pathogenesis, clinical characteristics and treatment strategies.Annals of Hematology 2024 August 28
A General Neurologist's Practical Diagnostic Algorithm for Atypical Parkinsonian Disorders: A Consensus Statement.Neurology. Clinical Practice 2024 December
Recommendation for the practice of total intravenous anesthesia.Journal of Anesthesia 2024 September 1
Current and Clinically Relevant Echocardiographic Parameters to Analyze Left Atrial Function.Journal of Cardiovascular Development and Disease 2024 August 5
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app