We have located links that may give you full text access.
Non-annotated renal histopathological image analysis with deep ensemble learning.
Quantitative Imaging in Medicine and Surgery 2023 September 1
BACKGROUND: Renal cancer is one of the leading causes of cancer-related deaths worldwide, and early detection of renal cancer can significantly improve the patients' survival rate. However, the manual analysis of renal tissue in the current clinical practices is labor-intensive, prone to inter-pathologist variations and easy to miss the important cancer markers, especially in the early stage.
METHODS: In this work, we developed deep convolutional neural network (CNN) based heterogeneous ensemble models for automated analysis of renal histopathological images without detailed annotations. The proposed method would first segment the histopathological tissue into patches with different magnification factors, then classify the generated patches into normal and tumor tissues using the pre-trained CNNs and lastly perform the deep ensemble learning to determine the final classification. The heterogeneous ensemble models consisted of CNN models from five deep learning architectures, namely VGG, ResNet, DenseNet, MobileNet, and EfficientNet. These CNN models were fine-tuned and used as base learners, they exhibited different performances and had great diversity in histopathological image analysis. The CNN models with superior classification accuracy (Acc) were then selected to undergo ensemble learning for the final classification. The performance of the investigated ensemble approaches was evaluated against the state-of-the-art literature.
RESULTS: The performance evaluation demonstrated the superiority of the proposed best performing ensembled model: five-CNN based weighted averaging model, with an Acc (99%), specificity (Sp) (98%), F1-score (F1) (99%) and area under the receiver operating characteristic (ROC) curve (98%) but slightly inferior recall (Re) (99%) compared to the literature.
CONCLUSIONS: The outstanding robustness of the developed ensemble model with a superiorly high-performance scores in the evaluated metrics suggested its reliability as a diagnosis system for assisting the pathologists in analyzing the renal histopathological tissues. It is expected that the proposed ensemble deep CNN models can greatly improve the early detection of renal cancer by making the diagnosis process more efficient, and less misdetection and misdiagnosis; subsequently, leading to higher patients' survival rate.
METHODS: In this work, we developed deep convolutional neural network (CNN) based heterogeneous ensemble models for automated analysis of renal histopathological images without detailed annotations. The proposed method would first segment the histopathological tissue into patches with different magnification factors, then classify the generated patches into normal and tumor tissues using the pre-trained CNNs and lastly perform the deep ensemble learning to determine the final classification. The heterogeneous ensemble models consisted of CNN models from five deep learning architectures, namely VGG, ResNet, DenseNet, MobileNet, and EfficientNet. These CNN models were fine-tuned and used as base learners, they exhibited different performances and had great diversity in histopathological image analysis. The CNN models with superior classification accuracy (Acc) were then selected to undergo ensemble learning for the final classification. The performance of the investigated ensemble approaches was evaluated against the state-of-the-art literature.
RESULTS: The performance evaluation demonstrated the superiority of the proposed best performing ensembled model: five-CNN based weighted averaging model, with an Acc (99%), specificity (Sp) (98%), F1-score (F1) (99%) and area under the receiver operating characteristic (ROC) curve (98%) but slightly inferior recall (Re) (99%) compared to the literature.
CONCLUSIONS: The outstanding robustness of the developed ensemble model with a superiorly high-performance scores in the evaluated metrics suggested its reliability as a diagnosis system for assisting the pathologists in analyzing the renal histopathological tissues. It is expected that the proposed ensemble deep CNN models can greatly improve the early detection of renal cancer by making the diagnosis process more efficient, and less misdetection and misdiagnosis; subsequently, leading to higher patients' survival rate.
Full text links
Related Resources
Trending Papers
Updated evidence on cardiovascular and renal effects of GLP-1 receptor agonists and combination therapy with SGLT2 inhibitors and finerenone: a narrative review and perspectives.Cardiovascular Diabetology 2024 November 15
Pharmacologic Treatment of Pulmonary Hypertension Due to Heart Failure with Preserved Ejection Fraction: Are There More Arrows on Our Bow?Journal of Clinical Medicine 2024 November 14
Guidelines for the Prevention, Diagnosis, and Management of Urinary Tract Infections in Pediatrics and Adults: A WikiGuidelines Group Consensus Statement.JAMA Network Open 2024 November 4
Autoantibodies in neuromuscular disorders: a review of their utility in clinical practice.Frontiers in Neurology 2024
Methods for determining optimal positive end-expiratory pressure in patients undergoing invasive mechanical ventilation: a scoping review.Canadian Journal of Anaesthesia 2024 November 20
Cardiac Failure and Cardiogenic Shock: Insights Into Pathophysiology, Classification, and Hemodynamic Assessment.Curēus 2024 October
The Management of Interstitial Lung Disease in the ICU: A Comprehensive Review.Journal of Clinical Medicine 2024 November 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app