Add like
Add dislike
Add to saved papers

Discovering associations between radiological features and COVID-19 patients' deterioration.

Health Science Reports 2023 September
BACKGROUND AND AIMS: Data mining methods are effective and well-known tools for developing predictive models and extracting useful information from various data of patients. The present study aimed to predict the severity of patients with COVID-19 by applying the rule mining method using characteristics of medical images.

METHODS: This retrospective study has analyzed the radiological data from 104 COVID-19 hospitalized patients diagnosed with COVID-19 in a hospital in Iran. A data set containing 75 binary features was generated. Apriori method is utilized for association rule mining on this data set. Only rules with confidence equal to one were generated. The performance of rules is calculated by support, coverage, and lift indexes.

RESULTS: Ten rules were extracted with only X-ray-related features on cases referred to ICU. The Support and Coverage index of all of these rules was 0.087, and the Lift index of them was 1.58. Thirteen rules were extracted from only CT scan-related features on cases referred to ICU. The CXR_Pleural effusion feature has appeared in all the rules. The CXR_Left upper zone feature appears in 9 rules out of 10. The Support and Coverage index of all rules was 0.15, and the Lift index of all rules was 1.63. the CT_Adjacent pleura thickening feature has appeared in all rules, and the CT_Right middle lobe appeared in 9 rules out of 13.

CONCLUSION: This study could reveal the application and efficacy of CXR and CT scan imaging modalities in predicting ICU admission to a major COVID-19 infection via data mining methods. The findings of this study could help data scientists, radiologists, and clinicians in the future development and implementation of these methods in similar conditions and timely and appropriately save patients from adverse disease outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app