JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Use of big data and machine learning algorithms to extract possible treatment targets in neurodevelopmental disorders.

Pharmacology & Therapeutics 2023 September 13
Neurodevelopmental disorders (NDDs) impact multiple aspects of an individual's functioning, including social interactions, communication, and behaviors. The underlying biological mechanisms of NDDs are not yet fully understood, and pharmacological treatments have been limited in their effectiveness, in part due to the complex nature of these disorders and the heterogeneity of symptoms across individuals. Identifying genetic loci associated with NDDs can help in understanding biological mechanisms and potentially lead to the development of new treatments. However, the polygenic nature of these complex disorders has made identifying new treatment targets from genome-wide association studies (GWAS) challenging. Recent advances in the fields of big data and high-throughput tools have provided radically new insights into the underlying biological mechanism of NDDs. This paper reviews various big data approaches, including classical and more recent techniques like deep learning, which can identify potential treatment targets from GWAS and other omics data, with a particular emphasis on NDDs. We also emphasize the increasing importance of explainable and causal machine learning (ML) methods that can aid in identifying genes, molecular pathways, and more complex biological processes that may be future targets of intervention in these disorders. We conclude that these new developments in genetics and ML hold promise for advancing our understanding of NDDs and identifying novel treatment targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app