Add like
Add dislike
Add to saved papers

To shield or not to shield: shielding may have unintended effects on patient dose in CT.

European Radiology 2023 September 14
OBJECTIVES: The aim of the patient out-of-plane shield is to reduce the patient radiation dose. Its effect on tube current modulation was evaluated with the out-of-plane shield visible in the localizer but absent in the scan range in chest CT with different CT scanners.

METHODS: An anthropomorphic phantom was scanned with six different CT scanners from three different vendors. The chest was first scanned without any shielding, and then with the out-of-plane shield within the localizer but outside the imaged volume. All pitch values of each scanner were used. The tube current values with and without the out-of-plane shield were collected and used to evaluate the effect of overscanning and tube current modulation (TCM) on patient radiation dose.

RESULTS: The highest increase in cumulative mA was 217%, when the pitch was 1.531. The tube current value increased already 8.9 cm before the end of the scanned anatomy and the difference between the tube current of the last slices (with and without the out-of-plane shield in the localizer) was 976%.

CONCLUSION: Applying an out-of-plane shield outside the scanned volume but visible in the localizer images may increase the patient dose considerably if the scanner's TCM function is based only on localizer images.

CLINICAL RELEVANCE STATEMENT: The use of an out-of-plane shield in CT may strongly increase the tube current modulation and thus provide the patient with a higher radiation dose.

KEY POINTS: • Applying an out-of-plane shield outside the scanned volume but visible in the localizer images may increase patient radiation dose considerably. • The effect is visible with scanners that use solely localizer-based tube current modulation. • Features like overscanning may be difficult for the user to notice when planning the scanning, and yet they may affect tube current modulation and through it to patient dose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app