Add like
Add dislike
Add to saved papers

Red light enhances the antibacterial properties, biofabrication, and stability of Fagonia indica callus-based silver nanoparticles.

Plant-based nanoparticles can be tuned through the frequency of light for efficient synthesis, structural properties, and antibacterial applications. This research assessed the effect of material type (callus and whole-plant extract) and the interaction with a specific range of light wavelength on AgNP synthesis. All types of AgNPs were characterized by their size, shape, associated functional groups, and surface charge. Interestingly, the size of red light and callus-based AgNPs (RC-AgNPs) was smaller (6.32 nm) compared to 14.59 nm for Ultraviolet light and callus-based AgNPs (UV-C-AgNPs). Zeta potential analysis showed that RC-AgNPs had higher stability (-29.2 mV) compared to UV-C-AgNPs (-16.7 mV). Similarly, red light-based AgNPs had higher Oxidation reduction potential in both whole-plant-based and callus-based AgNPs, indicating a more oxidizing nature compared to those synthesized under UV light. This was confirmed by the lower total phenolic and flavonoid content associated with them and their lower antioxidant activity. The higher antibacterial activities and lower minimum inhibitory concentrations of red light-based AgNPs against highly resistant pathogenic bacteria demonstrated the role of red light in enhancing antibacterial activity. These results indicate that AgNPs synthesized in red light and callus extract are more active compared to those synthesized under other wavelengths and/or in whole-plant extracts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app